autocxx/
subclass.rs

1//! Module to make Rust subclasses of C++ classes. See [`CppSubclass`]
2//! for details.
3
4// Copyright 2021 Google LLC
5//
6// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
7// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
8// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
9// option. This file may not be copied, modified, or distributed
10// except according to those terms.
11
12use std::{
13    cell::RefCell,
14    pin::Pin,
15    rc::{Rc, Weak},
16};
17
18use cxx::{memory::UniquePtrTarget, UniquePtr};
19
20/// Deprecated - use [`subclass`] instead.
21#[deprecated]
22pub use autocxx_macro::subclass as is_subclass;
23
24/// Declare a Rust subclass of a C++ class.
25/// You can use this in two ways:
26/// * As an attribute macro on a struct which is to be a subclass.
27///   In this case, you must specify the superclass as described below.
28///   For instance,
29///   ```nocompile
30///   # use autocxx_macro::subclass as subclass;
31///   #[subclass(superclass("MyCppSuperclass"))]
32///   struct Bar {};
33///   ```
34/// * as a directive within the [crate::include_cpp] macro, in which case you
35///   must provide two arguments of the superclass and then the
36///   subclass:
37///   ```
38///   # use autocxx_macro::include_cpp_impl as include_cpp;
39///   include_cpp!(
40///   #   parse_only!()
41///       #include "input.h"
42///       subclass!("MyCppSuperclass",Bar)
43///       safety!(unsafe)
44///   );
45///   struct Bar {
46///     // ...
47///   }
48///   ```
49///   In this latter case, you'll need to implement the trait
50///   [`CppSubclass`] for the struct, so it's
51///   generally easier to use the former option.
52///
53/// See [`CppSubclass`] for information about the
54/// multiple steps you need to take to be able to make Rust
55/// subclasses of a C++ class.
56pub use autocxx_macro::subclass;
57
58/// A prelude containing all the traits and macros required to create
59/// Rust subclasses of C++ classes. It's recommended that you:
60///
61/// ```rust
62/// use autocxx::subclass::prelude::*;
63/// ```
64pub mod prelude {
65    pub use super::{
66        is_subclass, subclass, CppPeerConstructor, CppSubclass, CppSubclassDefault,
67        CppSubclassRustPeerHolder, CppSubclassSelfOwned, CppSubclassSelfOwnedDefault,
68    };
69}
70
71/// A trait representing the C++ side of a Rust/C++ subclass pair.
72#[doc(hidden)]
73pub trait CppSubclassCppPeer: UniquePtrTarget {
74    fn relinquish_ownership(&self);
75}
76
77/// A type used for how the C++ side of a Rust/C++ subclass pair refers to
78/// the Rust side.
79#[doc(hidden)]
80pub enum CppSubclassRustPeerHolder<T> {
81    Owned(Rc<RefCell<T>>),
82    Unowned(Weak<RefCell<T>>),
83}
84
85impl<T> CppSubclassRustPeerHolder<T> {
86    pub fn get(&self) -> Option<Rc<RefCell<T>>> {
87        match self {
88            CppSubclassRustPeerHolder::Owned(strong) => Some(strong.clone()),
89            CppSubclassRustPeerHolder::Unowned(weak) => weak.upgrade(),
90        }
91    }
92    pub fn relinquish_ownership(self) -> Self {
93        match self {
94            CppSubclassRustPeerHolder::Owned(strong) => {
95                CppSubclassRustPeerHolder::Unowned(Rc::downgrade(&strong))
96            }
97            _ => self,
98        }
99    }
100}
101
102/// A type showing how the Rust side of a Rust/C++ subclass pair refers to
103/// the C++ side.
104#[doc(hidden)]
105#[derive(Default)]
106pub enum CppSubclassCppPeerHolder<CppPeer: CppSubclassCppPeer> {
107    #[default]
108    Empty,
109    Owned(Box<UniquePtr<CppPeer>>),
110    Unowned(*mut CppPeer),
111}
112
113impl<CppPeer: CppSubclassCppPeer> CppSubclassCppPeerHolder<CppPeer> {
114    fn pin_mut(&mut self) -> Pin<&mut CppPeer> {
115        match self {
116            CppSubclassCppPeerHolder::Empty => panic!("Peer not set up"),
117            CppSubclassCppPeerHolder::Owned(peer) => peer.pin_mut(),
118            CppSubclassCppPeerHolder::Unowned(peer) => unsafe {
119                // Safety: guaranteed safe because this is a pointer to a C++ object,
120                // and C++ never moves things in memory.
121                Pin::new_unchecked(peer.as_mut().unwrap())
122            },
123        }
124    }
125    fn get(&self) -> &CppPeer {
126        match self {
127            CppSubclassCppPeerHolder::Empty => panic!("Peer not set up"),
128            CppSubclassCppPeerHolder::Owned(peer) => peer.as_ref(),
129            // Safety: guaranteed safe because this is a pointer to a C++ object,
130            // and C++ never moves things in memory.
131            CppSubclassCppPeerHolder::Unowned(peer) => unsafe { peer.as_ref().unwrap() },
132        }
133    }
134    fn set_owned(&mut self, peer: UniquePtr<CppPeer>) {
135        *self = Self::Owned(Box::new(peer));
136    }
137    fn set_unowned(&mut self, peer: &mut UniquePtr<CppPeer>) {
138        // Safety: guaranteed safe because this is a pointer to a C++ object,
139        // and C++ never moves things in memory.
140        *self = Self::Unowned(unsafe {
141            std::pin::Pin::<&mut CppPeer>::into_inner_unchecked(peer.pin_mut())
142        });
143    }
144}
145
146fn make_owning_peer<CppPeer, PeerConstructor, Subclass, PeerBoxer>(
147    me: Subclass,
148    peer_constructor: PeerConstructor,
149    peer_boxer: PeerBoxer,
150) -> Rc<RefCell<Subclass>>
151where
152    CppPeer: CppSubclassCppPeer,
153    Subclass: CppSubclass<CppPeer>,
154    PeerConstructor:
155        FnOnce(&mut Subclass, CppSubclassRustPeerHolder<Subclass>) -> UniquePtr<CppPeer>,
156    PeerBoxer: FnOnce(Rc<RefCell<Subclass>>) -> CppSubclassRustPeerHolder<Subclass>,
157{
158    let me = Rc::new(RefCell::new(me));
159    let holder = peer_boxer(me.clone());
160    let cpp_side = peer_constructor(&mut me.as_ref().borrow_mut(), holder);
161    me.as_ref()
162        .borrow_mut()
163        .peer_holder_mut()
164        .set_owned(cpp_side);
165    me
166}
167
168/// A trait to be implemented by a subclass which knows how to construct
169/// its C++ peer object. Specifically, the implementation here will
170/// arrange to call one or other of the `make_unique` methods to be
171/// found on the superclass of the C++ object. If the superclass
172/// has a single trivial constructor, then this is implemented
173/// automatically for you. If there are multiple constructors, or
174/// a single constructor which takes parameters, you'll need to implement
175/// this trait for your subclass in order to call the correct
176/// constructor.
177pub trait CppPeerConstructor<CppPeer: CppSubclassCppPeer>: Sized {
178    /// Create the C++ peer. This method will be automatically generated
179    /// for you *except* in cases where the superclass has multiple constructors,
180    /// or its only constructor takes parameters. In such a case you'll need
181    /// to implement this by calling a `make_unique` method on the
182    /// `<my subclass name>Cpp` type, passing `peer_holder` as the first
183    /// argument.
184    fn make_peer(&mut self, peer_holder: CppSubclassRustPeerHolder<Self>) -> UniquePtr<CppPeer>;
185}
186
187/// A subclass of a C++ type.
188///
189/// To create a Rust subclass of a C++ class, you must do these things:
190/// * Create a `struct` to act as your subclass, and add the #[`macro@crate::subclass`] attribute.
191///   This adds a field to your struct for autocxx record-keeping. You can
192///   instead choose to implement [`CppSubclass`] a different way, in which case
193///   you must provide the [`macro@crate::subclass`] inside your [`crate::include_cpp`]
194///   macro. (`autocxx` will do the required codegen for your subclass
195///   whether it discovers a [`macro@crate::subclass`] directive inside your
196///   [`crate::include_cpp`], or elsewhere used as an attribute macro,
197///   or both.)
198/// * Use the [`CppSubclass`] trait, and instantiate the subclass using
199///   [`CppSubclass::new_rust_owned`] or [`CppSubclass::new_cpp_owned`]
200///   constructors. (You can use [`CppSubclassSelfOwned`] if you need that
201///   instead; also, see [`CppSubclassSelfOwnedDefault`] and [`CppSubclassDefault`]
202///   to arrange for easier constructors to exist.
203/// * You _may_ need to implement [`CppPeerConstructor`] for your subclass,
204///   but only if autocxx determines that there are multiple possible superclass
205///   constructors so you need to call one explicitly (or if there's a single
206///   non-trivial superclass constructor.) autocxx will implement this trait
207///   for you if there's no ambiguity and FFI functions are safe to call due to
208///   `autocxx::safety!` being used.
209///
210/// # How to access your Rust structure from outside
211///
212/// Use [`CppSubclass::new_rust_owned`] then use [`std::cell::RefCell::borrow`]
213/// or [`std::cell::RefCell::borrow_mut`] to obtain the underlying Rust struct.
214///
215/// # How to call C++ methods on the subclass
216///
217/// Do the same. You should find that your subclass struct `impl`s all the
218/// C++ methods belonging to the superclass.
219///
220/// # How to implement virtual methods
221///
222/// Simply add an `impl` for the `struct`, implementing the relevant method.
223/// The C++ virtual function call will be redirected to your Rust implementation.
224///
225/// # How _not_ to implement virtual methods
226///
227/// If you don't want to implement a virtual method, don't: the superclass
228/// method will be called instead. Naturally, you must implement any pure virtual
229/// methods.
230///
231/// # How it works
232///
233/// This actually consists of two objects: this object itself and a C++-side
234/// peer. The ownership relationship between those two things can work in three
235/// different ways:
236/// 1. Neither object is owned by Rust. The C++ peer is owned by a C++
237///    [`UniquePtr`] held elsewhere in C++. That C++ peer then owns
238///    this Rust-side object via a strong [`Rc`] reference. This is the
239///    ownership relationship set up by [`CppSubclass::new_cpp_owned`].
240/// 2. The object pair is owned by Rust. Specifically, by a strong
241///    [`Rc`] reference to this Rust-side object. In turn, the Rust-side object
242///    owns the C++-side peer via a [`UniquePtr`]. This is what's set up by
243///    [`CppSubclass::new_rust_owned`]. The C++-side peer _does not_ own the Rust
244///    object; it just has a weak pointer. (Otherwise we'd get a reference
245///    loop and nothing would ever be freed.)
246/// 3. The object pair is self-owned and will stay around forever until
247///    [`CppSubclassSelfOwned::delete_self`] is called. In this case there's a strong reference
248///    from the C++ to the Rust and from the Rust to the C++. This is useful
249///    for cases where the subclass is listening for events, and needs to
250///    stick around until a particular event occurs then delete itself.
251///
252/// # Limitations
253///
254/// * *Re-entrancy*. The main thing to look out for is re-entrancy. If a
255///   (non-const) virtual method is called on your type, which then causes you
256///   to call back into C++, which results in a _second_ call into a (non-const)
257///   virtual method, we will try to create two mutable references to your
258///   subclass which isn't allowed in Rust and will therefore panic.
259///
260///   A future version of autocxx may provide the option of treating all
261///   non-const methods (in C++) as const methods on the Rust side, which will
262///   give the option of using interior mutability ([`std::cell::RefCell`])
263///   for you to safely handle this situation, whilst remaining compatible
264///   with existing C++ interfaces. If you need this, indicate support on
265///   [this issue](https://github.com/google/autocxx/issues/622).
266///
267/// * *Thread safety*. The subclass object is not thread-safe and shouldn't
268///   be passed to different threads in C++. A future version of this code
269///   will give the option to use `Arc` and `Mutex` internally rather than
270///   `Rc` and `RefCell`, solving this problem.
271///
272/// * *Protected methods.* We don't do anything clever here - they're public.
273///
274/// * *Non-trivial class hierarchies*. We don't yet consider virtual methods
275///   on base classes of base classes. This is a temporary limitation,
276///   [see this issue](https://github.com/google/autocxx/issues/610).
277pub trait CppSubclass<CppPeer: CppSubclassCppPeer>: CppPeerConstructor<CppPeer> {
278    /// Return the field which holds the C++ peer object. This is normally
279    /// implemented by the #[`is_subclass`] macro, but you're welcome to
280    /// implement it yourself if you prefer.
281    fn peer_holder(&self) -> &CppSubclassCppPeerHolder<CppPeer>;
282
283    /// Return the field which holds the C++ peer object. This is normally
284    /// implemented by the #[`is_subclass`] macro, but you're welcome to
285    /// implement it yourself if you prefer.
286    fn peer_holder_mut(&mut self) -> &mut CppSubclassCppPeerHolder<CppPeer>;
287
288    /// Return a reference to the C++ part of this object pair.
289    /// This can be used to register listeners, etc.
290    fn peer(&self) -> &CppPeer {
291        self.peer_holder().get()
292    }
293
294    /// Return a mutable reference to the C++ part of this object pair.
295    /// This can be used to register listeners, etc.
296    fn peer_mut(&mut self) -> Pin<&mut CppPeer> {
297        self.peer_holder_mut().pin_mut()
298    }
299
300    /// Creates a new instance of this subclass. This instance is owned by the
301    /// returned [`cxx::UniquePtr`] and thus would typically be returned immediately
302    /// to C++ such that it can be owned on the C++ side.
303    fn new_cpp_owned(me: Self) -> UniquePtr<CppPeer> {
304        let me = Rc::new(RefCell::new(me));
305        let holder = CppSubclassRustPeerHolder::Owned(me.clone());
306        let mut borrowed = me.as_ref().borrow_mut();
307        let mut cpp_side = borrowed.make_peer(holder);
308        borrowed.peer_holder_mut().set_unowned(&mut cpp_side);
309        cpp_side
310    }
311
312    /// Creates a new instance of this subclass. This instance is not owned
313    /// by C++, and therefore will be deleted when it goes out of scope in
314    /// Rust.
315    fn new_rust_owned(me: Self) -> Rc<RefCell<Self>> {
316        make_owning_peer(
317            me,
318            |obj, holder| obj.make_peer(holder),
319            |me| CppSubclassRustPeerHolder::Unowned(Rc::downgrade(&me)),
320        )
321    }
322}
323
324/// Trait to be implemented by subclasses which are self-owned, i.e. not owned
325/// externally by either Rust or C++ code, and thus need the ability to delete
326/// themselves when some virtual function is called.
327pub trait CppSubclassSelfOwned<CppPeer: CppSubclassCppPeer>: CppSubclass<CppPeer> {
328    /// Creates a new instance of this subclass which owns itself.
329    /// This is useful
330    /// for observers (etc.) which self-register to listen to events.
331    /// If an event occurs which would cause this to want to unregister,
332    /// use [`CppSubclassSelfOwned::delete_self`].
333    /// The return value may be useful to register this, etc. but can ultimately
334    /// be discarded without destroying this object.
335    fn new_self_owned(me: Self) -> Rc<RefCell<Self>> {
336        make_owning_peer(
337            me,
338            |obj, holder| obj.make_peer(holder),
339            CppSubclassRustPeerHolder::Owned,
340        )
341    }
342
343    /// Relinquishes ownership from the C++ side. If there are no outstanding
344    /// references from the Rust side, this will result in the destruction
345    /// of this subclass instance.
346    fn delete_self(&self) {
347        self.peer().relinquish_ownership()
348    }
349}
350
351/// Provides default constructors for subclasses which implement `Default`.
352pub trait CppSubclassDefault<CppPeer: CppSubclassCppPeer>: CppSubclass<CppPeer> + Default {
353    /// Create a Rust-owned instance of this subclass, initializing with default values. See
354    /// [`CppSubclass`] for more details of the ownership models available.
355    fn default_rust_owned() -> Rc<RefCell<Self>>;
356
357    /// Create a C++-owned instance of this subclass, initializing with default values. See
358    /// [`CppSubclass`] for more details of the ownership models available.
359    fn default_cpp_owned() -> UniquePtr<CppPeer>;
360}
361
362impl<T, CppPeer> CppSubclassDefault<CppPeer> for T
363where
364    T: CppSubclass<CppPeer> + Default,
365    CppPeer: CppSubclassCppPeer,
366{
367    fn default_rust_owned() -> Rc<RefCell<Self>> {
368        Self::new_rust_owned(Self::default())
369    }
370
371    fn default_cpp_owned() -> UniquePtr<CppPeer> {
372        Self::new_cpp_owned(Self::default())
373    }
374}
375
376/// Provides default constructors for subclasses which implement `Default`
377/// and are self-owning.
378pub trait CppSubclassSelfOwnedDefault<CppPeer: CppSubclassCppPeer>:
379    CppSubclassSelfOwned<CppPeer> + Default
380{
381    /// Create a self-owned instance of this subclass, initializing with default values. See
382    /// [`CppSubclass`] for more details of the ownership models available.
383    fn default_self_owned() -> Rc<RefCell<Self>>;
384}
385
386impl<T, CppPeer> CppSubclassSelfOwnedDefault<CppPeer> for T
387where
388    T: CppSubclassSelfOwned<CppPeer> + Default,
389    CppPeer: CppSubclassCppPeer,
390{
391    fn default_self_owned() -> Rc<RefCell<Self>> {
392        Self::new_self_owned(Self::default())
393    }
394}