autocxx/subclass.rs
1//! Module to make Rust subclasses of C++ classes. See [`CppSubclass`]
2//! for details.
3
4// Copyright 2021 Google LLC
5//
6// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
7// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
8// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
9// option. This file may not be copied, modified, or distributed
10// except according to those terms.
11
12use std::{
13 cell::RefCell,
14 pin::Pin,
15 rc::{Rc, Weak},
16};
17
18use cxx::{memory::UniquePtrTarget, UniquePtr};
19
20/// Deprecated - use [`subclass`] instead.
21#[deprecated]
22pub use autocxx_macro::subclass as is_subclass;
23
24/// Declare a Rust subclass of a C++ class.
25/// You can use this in two ways:
26/// * As an attribute macro on a struct which is to be a subclass.
27/// In this case, you must specify the superclass as described below.
28/// For instance,
29/// ```nocompile
30/// # use autocxx_macro::subclass as subclass;
31/// #[subclass(superclass("MyCppSuperclass"))]
32/// struct Bar {};
33/// ```
34/// * as a directive within the [crate::include_cpp] macro, in which case you
35/// must provide two arguments of the superclass and then the
36/// subclass:
37/// ```
38/// # use autocxx_macro::include_cpp_impl as include_cpp;
39/// include_cpp!(
40/// # parse_only!()
41/// #include "input.h"
42/// subclass!("MyCppSuperclass",Bar)
43/// safety!(unsafe)
44/// );
45/// struct Bar {
46/// // ...
47/// }
48/// ```
49/// In this latter case, you'll need to implement the trait
50/// [`CppSubclass`] for the struct, so it's
51/// generally easier to use the former option.
52///
53/// See [`CppSubclass`] for information about the
54/// multiple steps you need to take to be able to make Rust
55/// subclasses of a C++ class.
56pub use autocxx_macro::subclass;
57
58/// A prelude containing all the traits and macros required to create
59/// Rust subclasses of C++ classes. It's recommended that you:
60///
61/// ```rust
62/// use autocxx::subclass::prelude::*;
63/// ```
64pub mod prelude {
65 pub use super::{
66 is_subclass, subclass, CppPeerConstructor, CppSubclass, CppSubclassDefault,
67 CppSubclassRustPeerHolder, CppSubclassSelfOwned, CppSubclassSelfOwnedDefault,
68 };
69}
70
71/// A trait representing the C++ side of a Rust/C++ subclass pair.
72#[doc(hidden)]
73pub trait CppSubclassCppPeer: UniquePtrTarget {
74 fn relinquish_ownership(&self);
75}
76
77/// A type used for how the C++ side of a Rust/C++ subclass pair refers to
78/// the Rust side.
79#[doc(hidden)]
80pub enum CppSubclassRustPeerHolder<T> {
81 Owned(Rc<RefCell<T>>),
82 Unowned(Weak<RefCell<T>>),
83}
84
85impl<T> CppSubclassRustPeerHolder<T> {
86 pub fn get(&self) -> Option<Rc<RefCell<T>>> {
87 match self {
88 CppSubclassRustPeerHolder::Owned(strong) => Some(strong.clone()),
89 CppSubclassRustPeerHolder::Unowned(weak) => weak.upgrade(),
90 }
91 }
92 pub fn relinquish_ownership(self) -> Self {
93 match self {
94 CppSubclassRustPeerHolder::Owned(strong) => {
95 CppSubclassRustPeerHolder::Unowned(Rc::downgrade(&strong))
96 }
97 _ => self,
98 }
99 }
100}
101
102/// A type showing how the Rust side of a Rust/C++ subclass pair refers to
103/// the C++ side.
104#[doc(hidden)]
105#[derive(Default)]
106pub enum CppSubclassCppPeerHolder<CppPeer: CppSubclassCppPeer> {
107 #[default]
108 Empty,
109 Owned(Box<UniquePtr<CppPeer>>),
110 Unowned(*mut CppPeer),
111}
112
113impl<CppPeer: CppSubclassCppPeer> CppSubclassCppPeerHolder<CppPeer> {
114 fn pin_mut(&mut self) -> Pin<&mut CppPeer> {
115 match self {
116 CppSubclassCppPeerHolder::Empty => panic!("Peer not set up"),
117 CppSubclassCppPeerHolder::Owned(peer) => peer.pin_mut(),
118 CppSubclassCppPeerHolder::Unowned(peer) => unsafe {
119 // Safety: guaranteed safe because this is a pointer to a C++ object,
120 // and C++ never moves things in memory.
121 Pin::new_unchecked(peer.as_mut().unwrap())
122 },
123 }
124 }
125 fn get(&self) -> &CppPeer {
126 match self {
127 CppSubclassCppPeerHolder::Empty => panic!("Peer not set up"),
128 CppSubclassCppPeerHolder::Owned(peer) => peer.as_ref(),
129 // Safety: guaranteed safe because this is a pointer to a C++ object,
130 // and C++ never moves things in memory.
131 CppSubclassCppPeerHolder::Unowned(peer) => unsafe { peer.as_ref().unwrap() },
132 }
133 }
134 fn set_owned(&mut self, peer: UniquePtr<CppPeer>) {
135 *self = Self::Owned(Box::new(peer));
136 }
137 fn set_unowned(&mut self, peer: &mut UniquePtr<CppPeer>) {
138 // Safety: guaranteed safe because this is a pointer to a C++ object,
139 // and C++ never moves things in memory.
140 *self = Self::Unowned(unsafe {
141 std::pin::Pin::<&mut CppPeer>::into_inner_unchecked(peer.pin_mut())
142 });
143 }
144}
145
146fn make_owning_peer<CppPeer, PeerConstructor, Subclass, PeerBoxer>(
147 me: Subclass,
148 peer_constructor: PeerConstructor,
149 peer_boxer: PeerBoxer,
150) -> Rc<RefCell<Subclass>>
151where
152 CppPeer: CppSubclassCppPeer,
153 Subclass: CppSubclass<CppPeer>,
154 PeerConstructor:
155 FnOnce(&mut Subclass, CppSubclassRustPeerHolder<Subclass>) -> UniquePtr<CppPeer>,
156 PeerBoxer: FnOnce(Rc<RefCell<Subclass>>) -> CppSubclassRustPeerHolder<Subclass>,
157{
158 let me = Rc::new(RefCell::new(me));
159 let holder = peer_boxer(me.clone());
160 let cpp_side = peer_constructor(&mut me.as_ref().borrow_mut(), holder);
161 me.as_ref()
162 .borrow_mut()
163 .peer_holder_mut()
164 .set_owned(cpp_side);
165 me
166}
167
168/// A trait to be implemented by a subclass which knows how to construct its C++
169/// peer object. Specifically, the implementation here will arrange to call one
170/// or other of the `new` methods to be found on the peer type. If the C++
171/// superclass has a single trivial constructor, then this is implemented
172/// automatically for you. If there are multiple constructors, or a single
173/// constructor which takes parameters, you'll need to implement this trait for
174/// your subclass in order to call the correct constructor.
175pub trait CppPeerConstructor<CppPeer: CppSubclassCppPeer>: Sized {
176 /// Create the C++ peer. This method will be automatically generated
177 /// for you *except* in cases where the superclass has multiple constructors,
178 /// or its only constructor takes parameters. In such a case you'll need to
179 /// implement this by calling a `new` method on the `<my subclass name>Cpp`
180 /// type, passing `peer_holder` as the first argument.
181 fn make_peer(&mut self, peer_holder: CppSubclassRustPeerHolder<Self>) -> UniquePtr<CppPeer>;
182}
183
184/// A subclass of a C++ type.
185///
186/// To create a Rust subclass of a C++ class, you must do these things:
187/// * Create a `struct` to act as your subclass, and add the #[`macro@crate::subclass`] attribute.
188/// This adds a field to your struct for autocxx record-keeping. You can
189/// instead choose to implement [`CppSubclass`] a different way, in which case
190/// you must provide the [`macro@crate::subclass`] inside your [`crate::include_cpp`]
191/// macro. (`autocxx` will do the required codegen for your subclass
192/// whether it discovers a [`macro@crate::subclass`] directive inside your
193/// [`crate::include_cpp`], or elsewhere used as an attribute macro,
194/// or both.)
195/// * Use the [`CppSubclass`] trait, and instantiate the subclass using
196/// [`CppSubclass::new_rust_owned`] or [`CppSubclass::new_cpp_owned`]
197/// constructors. (You can use [`CppSubclassSelfOwned`] if you need that
198/// instead; also, see [`CppSubclassSelfOwnedDefault`] and [`CppSubclassDefault`]
199/// to arrange for easier constructors to exist.
200/// * You _may_ need to implement [`CppPeerConstructor`] for your subclass,
201/// but only if autocxx determines that there are multiple possible superclass
202/// constructors so you need to call one explicitly (or if there's a single
203/// non-trivial superclass constructor.) autocxx will implement this trait
204/// for you if there's no ambiguity and FFI functions are safe to call due to
205/// `autocxx::safety!` being used.
206///
207/// # How to access your Rust structure from outside
208///
209/// Use [`CppSubclass::new_rust_owned`] then use [`std::cell::RefCell::borrow`]
210/// or [`std::cell::RefCell::borrow_mut`] to obtain the underlying Rust struct.
211///
212/// # How to call C++ methods on the subclass
213///
214/// Do the same. You should find that your subclass struct `impl`s all the
215/// C++ methods belonging to the superclass.
216///
217/// # How to implement virtual methods
218///
219/// Simply add an `impl` for the `struct`, implementing the relevant method.
220/// The C++ virtual function call will be redirected to your Rust implementation.
221///
222/// # How _not_ to implement virtual methods
223///
224/// If you don't want to implement a virtual method, don't: the superclass
225/// method will be called instead. Naturally, you must implement any pure virtual
226/// methods.
227///
228/// # How it works
229///
230/// This actually consists of two objects: this object itself and a C++-side
231/// peer. The ownership relationship between those two things can work in three
232/// different ways:
233/// 1. Neither object is owned by Rust. The C++ peer is owned by a C++
234/// [`UniquePtr`] held elsewhere in C++. That C++ peer then owns
235/// this Rust-side object via a strong [`Rc`] reference. This is the
236/// ownership relationship set up by [`CppSubclass::new_cpp_owned`].
237/// 2. The object pair is owned by Rust. Specifically, by a strong
238/// [`Rc`] reference to this Rust-side object. In turn, the Rust-side object
239/// owns the C++-side peer via a [`UniquePtr`]. This is what's set up by
240/// [`CppSubclass::new_rust_owned`]. The C++-side peer _does not_ own the Rust
241/// object; it just has a weak pointer. (Otherwise we'd get a reference
242/// loop and nothing would ever be freed.)
243/// 3. The object pair is self-owned and will stay around forever until
244/// [`CppSubclassSelfOwned::delete_self`] is called. In this case there's a strong reference
245/// from the C++ to the Rust and from the Rust to the C++. This is useful
246/// for cases where the subclass is listening for events, and needs to
247/// stick around until a particular event occurs then delete itself.
248///
249/// # Limitations
250///
251/// * *Re-entrancy*. The main thing to look out for is re-entrancy. If a
252/// (non-const) virtual method is called on your type, which then causes you
253/// to call back into C++, which results in a _second_ call into a (non-const)
254/// virtual method, we will try to create two mutable references to your
255/// subclass which isn't allowed in Rust and will therefore panic.
256///
257/// A future version of autocxx may provide the option of treating all
258/// non-const methods (in C++) as const methods on the Rust side, which will
259/// give the option of using interior mutability ([`std::cell::RefCell`])
260/// for you to safely handle this situation, whilst remaining compatible
261/// with existing C++ interfaces. If you need this, indicate support on
262/// [this issue](https://github.com/google/autocxx/issues/622).
263///
264/// * *Thread safety*. The subclass object is not thread-safe and shouldn't
265/// be passed to different threads in C++. A future version of this code
266/// will give the option to use `Arc` and `Mutex` internally rather than
267/// `Rc` and `RefCell`, solving this problem.
268///
269/// * *Protected methods.* We don't do anything clever here - they're public.
270///
271/// * *Non-trivial class hierarchies*. We don't yet consider virtual methods
272/// on base classes of base classes. This is a temporary limitation,
273/// [see this issue](https://github.com/google/autocxx/issues/610).
274pub trait CppSubclass<CppPeer: CppSubclassCppPeer>: CppPeerConstructor<CppPeer> {
275 /// Return the field which holds the C++ peer object. This is normally
276 /// implemented by the #[`is_subclass`] macro, but you're welcome to
277 /// implement it yourself if you prefer.
278 fn peer_holder(&self) -> &CppSubclassCppPeerHolder<CppPeer>;
279
280 /// Return the field which holds the C++ peer object. This is normally
281 /// implemented by the #[`is_subclass`] macro, but you're welcome to
282 /// implement it yourself if you prefer.
283 fn peer_holder_mut(&mut self) -> &mut CppSubclassCppPeerHolder<CppPeer>;
284
285 /// Return a reference to the C++ part of this object pair.
286 /// This can be used to register listeners, etc.
287 fn peer(&self) -> &CppPeer {
288 self.peer_holder().get()
289 }
290
291 /// Return a mutable reference to the C++ part of this object pair.
292 /// This can be used to register listeners, etc.
293 fn peer_mut(&mut self) -> Pin<&mut CppPeer> {
294 self.peer_holder_mut().pin_mut()
295 }
296
297 /// Creates a new instance of this subclass. This instance is owned by the
298 /// returned [`cxx::UniquePtr`] and thus would typically be returned immediately
299 /// to C++ such that it can be owned on the C++ side.
300 fn new_cpp_owned(me: Self) -> UniquePtr<CppPeer> {
301 let me = Rc::new(RefCell::new(me));
302 let holder = CppSubclassRustPeerHolder::Owned(me.clone());
303 let mut borrowed = me.as_ref().borrow_mut();
304 let mut cpp_side = borrowed.make_peer(holder);
305 borrowed.peer_holder_mut().set_unowned(&mut cpp_side);
306 cpp_side
307 }
308
309 /// Creates a new instance of this subclass. This instance is not owned
310 /// by C++, and therefore will be deleted when it goes out of scope in
311 /// Rust.
312 fn new_rust_owned(me: Self) -> Rc<RefCell<Self>> {
313 make_owning_peer(
314 me,
315 |obj, holder| obj.make_peer(holder),
316 |me| CppSubclassRustPeerHolder::Unowned(Rc::downgrade(&me)),
317 )
318 }
319}
320
321/// Trait to be implemented by subclasses which are self-owned, i.e. not owned
322/// externally by either Rust or C++ code, and thus need the ability to delete
323/// themselves when some virtual function is called.
324pub trait CppSubclassSelfOwned<CppPeer: CppSubclassCppPeer>: CppSubclass<CppPeer> {
325 /// Creates a new instance of this subclass which owns itself.
326 /// This is useful
327 /// for observers (etc.) which self-register to listen to events.
328 /// If an event occurs which would cause this to want to unregister,
329 /// use [`CppSubclassSelfOwned::delete_self`].
330 /// The return value may be useful to register this, etc. but can ultimately
331 /// be discarded without destroying this object.
332 fn new_self_owned(me: Self) -> Rc<RefCell<Self>> {
333 make_owning_peer(
334 me,
335 |obj, holder| obj.make_peer(holder),
336 CppSubclassRustPeerHolder::Owned,
337 )
338 }
339
340 /// Relinquishes ownership from the C++ side. If there are no outstanding
341 /// references from the Rust side, this will result in the destruction
342 /// of this subclass instance.
343 fn delete_self(&self) {
344 self.peer().relinquish_ownership()
345 }
346}
347
348/// Provides default constructors for subclasses which implement `Default`.
349pub trait CppSubclassDefault<CppPeer: CppSubclassCppPeer>: CppSubclass<CppPeer> + Default {
350 /// Create a Rust-owned instance of this subclass, initializing with default values. See
351 /// [`CppSubclass`] for more details of the ownership models available.
352 fn default_rust_owned() -> Rc<RefCell<Self>>;
353
354 /// Create a C++-owned instance of this subclass, initializing with default values. See
355 /// [`CppSubclass`] for more details of the ownership models available.
356 fn default_cpp_owned() -> UniquePtr<CppPeer>;
357}
358
359impl<T, CppPeer> CppSubclassDefault<CppPeer> for T
360where
361 T: CppSubclass<CppPeer> + Default,
362 CppPeer: CppSubclassCppPeer,
363{
364 fn default_rust_owned() -> Rc<RefCell<Self>> {
365 Self::new_rust_owned(Self::default())
366 }
367
368 fn default_cpp_owned() -> UniquePtr<CppPeer> {
369 Self::new_cpp_owned(Self::default())
370 }
371}
372
373/// Provides default constructors for subclasses which implement `Default`
374/// and are self-owning.
375pub trait CppSubclassSelfOwnedDefault<CppPeer: CppSubclassCppPeer>:
376 CppSubclassSelfOwned<CppPeer> + Default
377{
378 /// Create a self-owned instance of this subclass, initializing with default values. See
379 /// [`CppSubclass`] for more details of the ownership models available.
380 fn default_self_owned() -> Rc<RefCell<Self>>;
381}
382
383impl<T, CppPeer> CppSubclassSelfOwnedDefault<CppPeer> for T
384where
385 T: CppSubclassSelfOwned<CppPeer> + Default,
386 CppPeer: CppSubclassCppPeer,
387{
388 fn default_self_owned() -> Rc<RefCell<Self>> {
389 Self::new_self_owned(Self::default())
390 }
391}