moveit/move_ref.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
// Copyright 2021 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Move references.
//!
//! A move reference represents an owned value that is stored "somewhere else".
//! We own the value, not the storage.
//!
//! A [`MoveRef<'a, T>`] represents a *permanent* unique reference to `T` for
//! the lifetime `'a`: it is the longest-lived *possible* reference to the
//! pointee, making it closer to a [`Box<T>`]
//!
//! Like [`&mut T`] but unlike [`Box<T>`], a [`MoveRef<T>`] is not responsible
//! for destroying its storage, meaning that it is storage agnostic. The storage
//! might be on the stack *or* on the heap; some RAII value on the stack is
//! responsible for destroying just the storage, once the [`MoveRef<T>`] itself
//! is gone.
//!
//! The main mechanism for obtaining [`MoveRef`]s is the [`moveit!()`] macro,
//! which is analogous to a theoretical `&move expr` operator. This macro
//! wraps [`DerefMove`], much like `&mut expr` wraps [`DerefMut`].
//!
//! Implementing [`DerefMove`] is a delicate affair; its documentation details
//! exactly how it should be done.
//!
//! # Drop Flags
//!
//! In order to be sound, a `MoveRef` must also hold a pointer to a drop flag,
//! which is used to detect if the `MoveRef` was dropped without destruction.
//!
//! In general, [`mem::forget`]ing a `MoveRef` is a very, very bad idea. In the
//! best case it will leak memory, but in some cases will crash the program in
//! order to observe safety guarantees.
use core::mem;
use core::ops::Deref;
use core::ops::DerefMut;
use core::pin::Pin;
use core::ptr;
#[cfg(doc)]
use {
crate::{drop_flag, moveit},
alloc::{boxed::Box, rc::Rc, sync::Arc},
core::mem::{ManuallyDrop, MaybeUninit},
};
use crate::drop_flag::DropFlag;
use crate::slot::DroppingSlot;
/// A `MoveRef<'a, T>` represents an owned `T` whose storage location is valid
/// but unspecified.
///
/// See [the module documentation][self] for more details.
pub struct MoveRef<'a, T: ?Sized> {
ptr: &'a mut T,
drop_flag: DropFlag<'a>,
}
impl<'a, T: ?Sized> MoveRef<'a, T> {
/// Creates a new `MoveRef<T>` out of a mutable reference.
///
/// # Safety
///
/// `ptr` must satisfy the *longest-lived* criterion: after the return value
/// goes out of scope, `ptr` must also be out-of-scope. Calling this function
/// correctly is non-trivial, and should be left to [`moveit!()`] instead.
///
/// In particular, if `ptr` outlives the returned `MoveRef`, it will point
/// to dropped memory, which is UB.
///
/// `drop_flag`'s value must not be dead, and must be a drop flag governing
/// the destruction of `ptr`'s storage in an appropriate manner as described
/// in [`moveit::drop_flag`][crate::drop_flag].
#[inline]
pub unsafe fn new_unchecked(ptr: &'a mut T, drop_flag: DropFlag<'a>) -> Self {
Self { ptr, drop_flag }
}
/// Converts a `MoveRef<T>` into a `Pin<MoveRef<T>>`.
///
/// Because we own the referent, we are entitled to pin it permanently. See
/// [`Box::into_pin()`] for a standard-library equivalent.
#[inline]
pub fn into_pin(this: Self) -> Pin<Self> {
unsafe { Pin::new_unchecked(this) }
}
/// Returns this `MoveRef<T>` as a raw pointer, without creating an
/// intermediate reference.
///
/// The usual caveats for casting a reference to a pointer apply.
#[inline]
pub fn as_ptr(this: &Self) -> *const T {
this.ptr
}
/// Returns this `MoveRef<T>` as a raw mutable pointer, without creating an
/// intermediate reference.
///
/// The usual caveats for casting a reference to a pointer apply.
#[inline]
pub fn as_mut_ptr(this: &mut Self) -> *mut T {
this.ptr
}
#[allow(unused)]
pub(crate) fn drop_flag(this: &Self) -> DropFlag<'a> {
this.drop_flag
}
}
// Extremely dangerous casts used by DerefMove below.
impl<'a, T> MoveRef<'a, T> {
/// Consumes `self`, blindly casting the inner pointer to `U`.
pub(crate) unsafe fn cast<U>(mut self) -> MoveRef<'a, U> {
let mr = MoveRef {
ptr: &mut *Self::as_mut_ptr(&mut self).cast(),
drop_flag: self.drop_flag,
};
mem::forget(self);
mr
}
}
impl<'a, T> MoveRef<'a, T> {
/// Consume the `MoveRef<T>`, returning the wrapped value.
#[inline]
pub fn into_inner(this: Self) -> T {
unsafe {
let val = ptr::read(this.ptr);
let _ = this.cast::<()>();
val
}
}
}
impl<T: ?Sized> Deref for MoveRef<'_, T> {
type Target = T;
#[inline]
fn deref(&self) -> &Self::Target {
self.ptr
}
}
impl<T: ?Sized> DerefMut for MoveRef<'_, T> {
#[inline]
fn deref_mut(&mut self) -> &mut Self::Target {
self.ptr
}
}
impl<T: ?Sized> Drop for MoveRef<'_, T> {
#[inline]
fn drop(&mut self) {
self.drop_flag.dec_and_check_if_died();
unsafe { ptr::drop_in_place(self.ptr) }
}
}
impl<'a, T> From<MoveRef<'a, T>> for Pin<MoveRef<'a, T>> {
#[inline]
fn from(x: MoveRef<'a, T>) -> Self {
MoveRef::into_pin(x)
}
}
/// A trait for getting a pinned [`MoveRef`] for some pointer type `Self`.
///
/// Conceptually, this trait is similar to [`DerefMove`], except that where
/// [`DerefMove::deref_move`] produces a `MoveRef<T>`, [`AsMove::as_move`] produces a
/// `Pin<MoveRef<T>>`.
///
/// `DerefMove` can be seen as a refinement of `AsMove` where stronger guarantees about the memory
/// behavior (specifically the Pin-safety) of `Self` are present.
///
/// Codifying this notion is the fact that `DerefMove` requires that `Self: DerefMut + AsMove`,
/// whereas `AsMove` only requires the weaker constraints of `Self: Deref`.
///
/// Although `AsMove` is a supertrait of `DerefMove`, but `DerefMove` is *not* a supertrait of
/// `AsMove`, the two traits are nevertheless intended to have their impls for a given type defined
/// together *simultanteously*.
///
/// It is expected in this situation that the impl for one of the traits will be (trivially) defined
/// in terms of the other, depending on the API for the pointer type `Self` with respect to
/// [`DerefMut`].
///
/// For example, the `Box<T>: AsMove` impl is defined in terms of the `Box<T>: DerefMove` impl,
/// because it is always the case that `Box<T>: DerefMut` regardless of whether `T: Unpin`. Hence,
/// `Box<T>: AsMove` simply performs the `Box<T>: DerefMove` operation then subsequently
/// (and trivially) pins the resulting `MoveRef<T>` with [`MoveRef::into_pin`].
///
/// On the other hand, the `cxx::UniquePtr<T>: DerefMove` impl is defined in terms of the
/// `UniquePtr<T>: AsMove` impl, because a `cxx::UniquePtr<T>: DerefMut` only if `T: Unpin`. Given
/// that `cxx::UniquePtr<T>` behaves like `Pin<Box<T>>` with respect to `DerefMut`, it is always
/// possible to safely produce a `Pin<MoveRef<T>>`, but *not* always possible to safely produce a
/// `MoveRef<T>`. Hence, when `T: Unpin`, only then `cxx::UniquePtr<T>: DerefMove` is defined,
/// which simply performs the `cxx::UniquePtr<T>: AsMove` operation then subsequently
/// (and trivially) unpins the resulting `Pin<MoveRef<T>>` with [`Pin::into_inner`].
pub trait AsMove: Deref + Sized {
/// The "pure storage" form of `Self`, which owns the storage but not the
/// pointee.
type Storage: Sized;
/// Gets a pinned `MoveRef` out of `Self`.
///
/// This function is best paired with [`moveit!()`]:
/// ```
/// # use core::pin::Pin;
/// # use moveit::{moveit, slot::DroppingSlot, move_ref::AsMove};
/// let ptr = Box::pin(5);
/// moveit::slot!(#[dropping] storage);
/// ptr.as_move(storage);
/// ```
/// Taking a trip through [`moveit!()`] is unavoidable due to the nature of
/// `MoveRef`.
///
/// Compare with [`Pin::as_mut()`].
fn as_move<'frame>(
self,
storage: DroppingSlot<'frame, Self::Storage>,
) -> Pin<MoveRef<'frame, Self::Target>>
where
Self: 'frame;
}
impl<'f, T: ?Sized> AsMove for MoveRef<'f, T> {
type Storage = ();
#[inline]
fn as_move<'frame>(
self,
storage: DroppingSlot<'frame, Self::Storage>,
) -> Pin<MoveRef<'frame, Self::Target>>
where
Self: 'frame,
{
MoveRef::into_pin(DerefMove::deref_move(self, storage))
}
}
impl<P: DerefMove> AsMove for Pin<P> {
type Storage = P::Storage;
#[inline]
fn as_move<'frame>(
self,
storage: DroppingSlot<'frame, Self::Storage>,
) -> Pin<MoveRef<'frame, Self::Target>>
where
Self: 'frame,
{
unsafe {
// SAFETY:
//
// It is safe to unwrap the `Pin` because `deref_move()` must not move out of the actual
// storage, merely shuffle pointers around, and immediately after the call to `deref_move()`
// we repin with `MoveRef::into_pin`, so the `Pin` API invariants are not violated later.
MoveRef::into_pin(P::deref_move(Pin::into_inner_unchecked(self), storage))
}
}
}
/// Moving dereference operations.
///
/// *Note: This trait is intended to be defined in conjunction with [`AsMove`],
/// and there is a subtle interdependency between the two traits. We recommend
/// also reading it's documentation for a better understanding of how these
/// traits fit together.*
///
/// This trait is the `&move` analogue of [`Deref`], for taking a pointer that
/// is the *sole owner* its pointee and converting it to a [`MoveRef`]. In
/// particular, a pointer type `P` owns its contents if dropping it would cause
/// its pointee's destructor to run.
///
/// For example:
/// - [`MoveRef<T>`] implements `DerefMove` by definition.
/// - [`Box<T>`] implements `DerefMove`, since it drops the `T` in its
/// destructor.
/// - [`&mut T`] does *not* implement `DerefMove`, because it is
/// necessarily a borrow of a longer-lived, "truly owning" reference.
/// - [`Rc<T>`] and [`Arc<T>`] do *not* implement `DerefMove`, because even
/// though they own their pointees, they are not the *sole* owners. Dropping
/// a reference-counted pointer need not run the destructor if other pointers
/// are still alive.
/// - [`Pin<P>`] for `P: DerefMove` implements `DerefMove` only when
/// `P::Target: Unpin`, since `DerefMove: DerefMut`.
///
/// # Principle of Operation
///
/// Unfortunately, because we don't yet have language support for `&move`, we
/// need to break the implementation into two steps:
/// - Inhibit the "inner destructor" of the pointee, so that the smart pointer
/// is now managing dumb bytes. This is usually accomplished by converting the
/// pointee type to [`MaybeUninit<T>`].
/// - Extract a [`MoveRef`] out of the "deinitialized" pointer.
///
/// The first part of this consists of converting the pointer into the
/// "partially deinitialized" form, represented by the type
/// [`AsMove::Storage`]: it is the pointer as "pure storage".
///
/// This pointer should be placed into the [`DroppingSlot`] passed into
/// `deref_move`, so that it has a fixed lifetime for the duration of the frame
/// that the [`MoveRef`] will exist for. The [`DroppingSlot`] will also provide
/// a drop flag to use to build the returned [`MoveRef`].
///
/// The mutable reference returned by the [`DroppingSlot`] should then be
/// converted into a [`MoveRef`]. The end result is that the [`DroppingSlot`]
/// owns the "outer" part of the pointer, while the [`MoveRef`] owns the "inner"
/// part. The `'frame` lifetime enforces the correct destruction order of these
/// two parts, since the [`MoveRef`] borrows the [`DroppingSlot`].
///
/// The [`moveit!()`] macro helps by constructing the [`DroppingSlot`] for you.
///
/// ## Worked Example: [`Box<T>`]
///
/// To inhibit the inner destructor of [`Box<T>`], we can use `Box<MaybeUninit<T>>`
/// as [`AsMove::Storage`]. [`MaybeUninit`] is preferred over [`ManuallyDrop`],
/// since it helps avoid otherwise scary aliasing problems with `Box<&mut T>`.
///
/// The first step is to "cast" `Box<T>` into `Box<MaybeUninit<T>>` via
/// [`Box::into_raw()`] and [`Box::from_raw()`]. This is then placed into the
/// final storage location using [`DroppingSlot::put()`].
///
/// This returns a `&mut Box<MaybeUninit<T>>` and a [`DropFlag`]; the former is
/// converted into an `&mut T` via [`MaybeUninit::assume_init_mut()`].
///
/// Finally, [`MoveRef::new_unchecked()`] is used to combine these into the
/// return value.
///
/// The first step is safe because we construct a `MoveRef` to reinstate the
/// destructor at the end of the function. The second step is safe because
/// we know, a priori, that the `Box` contains an initialized value. The final
/// step is safe, because we know, a priori, that the `Box` owns its pointee.
///
/// The use of the drop flag in this way makes it so that dropping the resulting
/// `MoveRef` will leak the storage on the heap, exactly the same way as if we
/// had leaked a `Box`.
///
/// ## Worked Example: [`MoveRef<T>`]
///
/// We don't need to inhibit any destructors: we just need to convert a
/// `MoveRef<MoveRef<T>>` into a `MoveRef<T>`, which we can do by using
/// [`MoveRef::into_inner()`]. [`AsMove::Storage`] can be whatever, so we
/// simply choose [`()`] for this; the choice is arbitrary.
///
/// # Safety
///
/// Implementing `DerefMove` correctly requires that the uniqueness requirement
/// of [`MoveRef`] is upheld. In particular, the following function *must not*
/// violate memory safety:
/// ```
/// # use moveit::{DerefMove, MoveRef, moveit};
/// fn move_out_of<P>(p: P) -> P::Target
/// where
/// P: DerefMove,
/// P::Target: Sized,
/// {
/// unsafe {
/// // Replace `p` with a move reference into it.
/// moveit!(let p = &move *p);
///
/// // Move out of `p`. From this point on, the `P::Target` destructor must
/// // run when, and only when, the function's return value goes out of
/// // scope per the usual Rust rules.
/// //
/// // In particular, the original `p` or any pointer it came from must not
/// // run the destructor when they go out of scope, under any circumstance.
/// MoveRef::into_inner(p)
/// }
/// }
/// ```
///
/// `deref_move()` must also be `Pin`-safe; even though it does not accept a
/// pinned reference, it must take care to not move its contents at any time.
/// In particular, the implementation of [`AsMove::as_move()`] must be safe by
/// definition.
pub unsafe trait DerefMove: DerefMut + AsMove {
/// Moves out of `self`, producing a [`MoveRef`] that owns its contents.
///
/// `storage` is a location *somewhere* responsible for rooting the lifetime
/// of `*this`'s storage. The location is unimportant, so long as it outlives
/// the resulting [`MoveRef`], which is enforced by the type signature.
///
/// [`moveit!()`] provides a convenient syntax for calling this function.
fn deref_move<'frame>(
self,
storage: DroppingSlot<'frame, Self::Storage>,
) -> MoveRef<'frame, Self::Target>
where
Self: 'frame;
}
unsafe impl<'a, T: ?Sized> DerefMove for MoveRef<'a, T> {
#[inline]
fn deref_move<'frame>(
self,
_storage: DroppingSlot<'frame, Self::Storage>,
) -> MoveRef<'frame, Self::Target>
where
Self: 'frame,
{
self
}
}
/// Note that `DerefMove` cannot be used to move out of a `Pin<P>` when `P::Target: !Unpin`.
/// ```compile_fail
/// # use crate::{moveit::{Emplace, MoveRef, moveit}};
/// # use core::{marker::PhantomPinned, pin::Pin};
/// // Fails to compile because `Box<PhantomPinned>: Deref<Target = PhantomPinned>` and `PhantomPinned: !Unpin`.
/// let ptr: Pin<Box<PhantomPinned>> = Box::emplace(moveit::new::default::<PhantomPinned>());
/// moveit!(let mref = &move *ptr);
///
/// // Fails to compile because `MoveRef<PhantomPinned>: Deref<Target = PhantomPinned>` and `PhantomPinned: !Unpin`.
/// moveit! {
/// let mref0: Pin<MoveRef<PhantomPinned>> = moveit::new::default::<PhantomPinned>();
/// let mref1 = &move *mref0;
/// }
unsafe impl<P> DerefMove for Pin<P>
where
P: DerefMove, // needed for `AsMove: Pin<P>` for the call to `Self::as_move`
P::Target: Unpin, // needed for the call to `Pin::into_inner`
{
#[inline]
fn deref_move<'frame>(
self,
storage: DroppingSlot<'frame, Self::Storage>,
) -> MoveRef<'frame, Self::Target>
where
Self: 'frame,
{
Pin::into_inner(self.as_move(storage))
}
}
#[doc(hidden)]
pub mod __macro {
use super::*;
use core::marker::PhantomData;
/// Type-inference helper for `moveit!`.
pub struct DerefPhantom<T>(PhantomData<*const T>);
impl<T: DerefMove> DerefPhantom<T> {
#[inline]
pub fn new(_: &T) -> Self {
Self(PhantomData)
}
#[inline]
pub fn deref_move<'frame>(
self,
this: T,
storage: DroppingSlot<'frame, T::Storage>,
) -> MoveRef<'frame, T::Target>
where
Self: 'frame,
{
T::deref_move(this, storage)
}
}
}
/// Performs an emplacement operation.
///
/// This macro allows for three exotic types of `let` bindings:
/// ```
/// # use moveit::{moveit, new, move_ref::MoveRef};
/// # use core::pin::Pin;
/// let bx = Box::new(42);
///
/// moveit! {
/// // Use a `New` to construct a new value in place on the stack. This
/// // produces a value of type `Pin<MoveRef<_>>`.
/// let x = new::default::<i32>();
///
/// // Move out of an existing `DerefMove` type, such as a `Box`. This has
/// // type `MoveRef<_>`, but can be pinned using `MoveRef::into_pin()`.
/// let y = &move *bx;
///
/// // Create a `MoveRef` of an existing type on the stack. This also has
/// // type `MoveRef<_>`.
/// let z = &move y;
/// }
/// ```
///
/// All three `lets`, including in-place construction, pin to the stack.
/// Consider using something like [`Box::emplace()`] to perform construction on
/// the heap.
///
/// This macro also has *temporary* forms, where rather than creating a binding,
/// a temporary (which cannot outlive its complete expression) is created:
///
/// ```
/// # use moveit::{moveit, new, move_ref::MoveRef};
/// # use core::pin::Pin;
/// fn do_thing(x: Pin<MoveRef<i32>>) {
/// // ...
/// # let _ = x;
/// }
///
/// do_thing(moveit!(new::of(42)));
/// ```
///
/// Note that these bindings cannot outlive the subexpression:
/// ```compile_fail
/// # use moveit::{moveit, new};
/// let x = moveit!(new::of(42));
/// let y = *x; // Borrow checker error.
/// ```
///
/// [`Box::emplace()`]: crate::new::Emplace::emplace
#[macro_export]
macro_rules! moveit {
(let $name:ident $(: $ty:ty)? = &move *$expr:expr $(; $($rest:tt)*)?) => {
$crate::moveit!(@move $name, $($ty)?, $expr);
$crate::moveit!($($($rest)*)?);
};
(let mut $name:ident $(: $ty:ty)? = &move *$expr:expr $(; $($rest:tt)*)?) => {
$crate::moveit!(@move(mut) $name, $($ty)?, $expr);
$crate::moveit!($($($rest)*)?);
};
(let $name:ident $(: $ty:ty)? = &move $expr:expr $(; $($rest:tt)*)?) => {
$crate::moveit!(@put $name, $($ty)?, $expr);
$crate::moveit!($($($rest)*)?);
};
(let mut $name:ident $(: $ty:ty)? = &move $expr:expr $(; $($rest:tt)*)?) => {
$crate::emplace!(@put(mut) $name, $($ty)?, $expr);
$crate::emplace!($($($rest)*)?);
};
(let $name:ident $(: $ty:ty)? = $expr:expr $(; $($rest:tt)*)?) => {
$crate::moveit!(@emplace $name, $($ty)?, $expr);
$crate::moveit!($($($rest)*)?);
};
(let mut $name:ident $(: $ty:ty)? = $expr:expr $(; $($rest:tt)*)?) => {
$crate::moveit!(@emplace(mut) $name, $($ty)?, $expr);
$crate::moveit!($($($rest)*)?);
};
($(;)?) => {};
(&move *$expr:expr) => {
$crate::move_ref::DerefMove::deref_move(
$expr, $crate::slot!(#[dropping]),
)
};
(&move $expr:expr) => {$crate::slot!().put($expr)};
($expr:expr) => {$crate::slot!().emplace($expr)};
(@move $(($mut:tt))? $name:ident, $($ty:ty)?, $expr:expr) => {
$crate::slot!(#[dropping] storage);
#[allow(unused_mut)]
let $($mut)? $name $(: $ty)? = $crate::move_ref::DerefMove::deref_move($expr, storage);
};
(@put $(($mut:tt))? $name:ident, $($ty:ty)?, $expr:expr) => {
$crate::slot!(slot);
let $($mut)? $name $(: $ty)? = slot.put($expr);
};
(@emplace $(($mut:tt))? $name:ident, $($ty:ty)?, $expr:expr) => {
$crate::slot!(slot);
let $($mut)? $name $(: $ty)? = slot.emplace($expr);
};
}
#[cfg(test)]
pub(crate) mod test {
use crate::new;
use crate::MoveNew;
use crate::New;
use super::*;
use std::alloc;
use std::alloc::Layout;
use std::marker::PhantomPinned;
use std::mem::MaybeUninit;
#[test]
fn deref_move_of_move_ref() {
moveit! {
let x: MoveRef<Box<i32>> = &move Box::new(5);
let y: MoveRef<Box<i32>> = &move *x;
}
let _ = y;
}
#[test]
fn deref_move_of_box() {
let x = Box::new(5);
moveit!(let y: MoveRef<i32> = &move *x);
let _ = y;
}
#[test]
fn move_ref_into_inner() {
moveit!(let x: MoveRef<Box<i32>> = &move Box::new(5));
let _ = MoveRef::into_inner(x);
}
#[test]
#[should_panic]
fn unforgettable() {
moveit!(let x: MoveRef<i32> = &move 42);
mem::forget(x);
}
#[test]
#[should_panic]
fn unforgettable_temporary() {
mem::forget(moveit!(&move 42));
}
#[test]
fn forgettable_box() {
let mut x = Box::new(5);
// Save the pointer for later, so that we can free it to make Miri happy.
let ptr = x.as_mut() as *mut i32;
moveit!(let y: MoveRef<i32> = &move *x);
// This should leak but be otherwise safe.
mem::forget(y);
// Free the leaked pointer; Miri will notice if this turns out to be a
// double-free.
unsafe {
alloc::dealloc(ptr as *mut u8, Layout::new::<i32>());
}
}
#[test]
fn forgettable_box_temporary() {
let mut x = Box::new(5);
// Save the pointer for later, so that we can free it to make Miri happy.
let ptr = x.as_mut() as *mut i32;
// This should leak but be otherwise safe.
mem::forget(moveit!(&move *x));
// Free the leaked pointer; Miri will notice if this turns out to be a
// double-free.
unsafe {
alloc::dealloc(ptr as *mut u8, Layout::new::<i32>());
}
}
// This type is reused in test code in cxx_support.
#[derive(Default)]
pub(crate) struct Immovable {
_pin: PhantomPinned,
}
impl Immovable {
pub(crate) fn new() -> impl New<Output = Self> {
new::default()
}
}
unsafe impl MoveNew for Immovable {
unsafe fn move_new(
_src: Pin<MoveRef<Self>>,
_this: Pin<&mut MaybeUninit<Self>>,
) {
}
}
#[test]
fn test_mov() {
moveit! {
let foo = Immovable::new();
let _foo = new::mov(foo);
}
}
}